Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
विकल्प
927
414
364
322
उत्तर
In the given problem, we have to find the value of `x^6 + 1/x^6`
Given `x+ 1/x =3`
We shall use the identity `(a + b)^3 = a^3 + b^3 + 3ab (a+b)`and `a^2 + b^2 + 2ab = (a+b)`
Here put `x+ 1/x = 3`,
`(x+ 1/x)^2 = x^2 + 1/x^2 + 2( x xx 1/x)`
`(3)^2 = x^2 + 1/x^2 + 2 (x xx 1/x)`
`9 = x^2 + 1/x^2 + 2`
`9-2 = x^2 + 1/x^2`
`7 = x^2 + 1/x^2`
Take Cube on both sides we get,
`(x^2 + 1/x^2 )^3 = (x^2)^3 + 1/(x^2)^3 + 3 (x^2 xx 1/x^2)(x^2 + 1/x^2)`
`(7)^3 = x^6 + 1/x^6 + 3(x^2 xx 1/x^2) (7)`
`343 = x^6 + 1/x^6 + 7 xx 3`
`343 - 21 = x^6 + 1/x^6`
`322 = x^6 + 1/x^6`
Hence the value of `x^6 + 1/x^6` is 322.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Evaluate the following using identities:
117 x 83
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following products:
`(1/2a - 3b)(1/2a + 3b)(1/4a^2 + 9b^2)`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Evaluate of the following:
1113 − 893
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If a + b = 6 and ab = 20, find the value of a3 − b3
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If a + b = 7 and ab = 10; find a - b.
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Expand the following:
(x - 3y - 2z)2
If a - b = 10 and ab = 11; find a + b.
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Expand the following:
(3a – 2b)3
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.