Advertisements
Advertisements
प्रश्न
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
विकल्प
8
10
12
13
उत्तर
In the given problem, we have to find the value of `x- 1/x`
Given `x^2 + 1/x^2 = 102`
We shall use the identity `(a-b)^2 = a^2 + b^2 - 2ab`
Here putting`x^2 + 1/x^2 = 102`,
`(x-1/x)^2 = x^2 + 1/x^2 - 2 (x- 1/x)`
`(x-1/x)^2 =102 - 2(x xx 1/x)`
`(x- 1/x)^2 = 102 -2`
`(x- 1/x)^2 = 100`
`(x-1/x) xx (x - 1/ x) = 10 xx 10`
`(x-1/x) = 10`
Hence the value of `x-1/x`is 10 .
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Expand the following, using suitable identity:
(x + 2y + 4z)2
Evaluate the following using suitable identity:
(99)3
Factorise the following:
27 – 125a3 – 135a + 225a2
Evaluate the following using identities:
117 x 83
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify: `(a + b + c)^2 - (a - b + c)^2`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
Evalute : `( 7/8x + 4/5y)^2`
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: 20.8 × 19.2
Evaluate the following without multiplying:
(95)2
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Expand the following:
(4a – b + 2c)2