Advertisements
Advertisements
प्रश्न
Simplify: `(a + b + c)^2 - (a - b + c)^2`
उत्तर
We have
`(a + b + c)^2 - (a - b + c)^2`
`=[(a + b + c)^2] - [a - b + c]^2`
`= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - [a^2 + b^2 + c^2 - 2ab - 2bc + 2ca]`
`= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - a^2 - b^2 - c^2 + 2ab + 2bc - 2ca`
`= 4ab + 4bc`
`∴ (a + b + c)^2 - (a - b + c)^2 = 4ab + 4bc`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Factorise the following:
64m3 – 343n3
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
Evaluate of the following:
463+343
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
Evaluate: `(2"x"-3/5)(2"x"+3/5)`
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Using suitable identity, evaluate the following:
101 × 102