Advertisements
Advertisements
प्रश्न
Simplify `(a + b + c)^2 + (a - b + c)^2`
उत्तर
We have
`(a + b + c)^2 + (a - b + c)^2`
`= [(a + b + c)^2] - [a - b + c]^2`
`= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - [a^2 + b^2 + c^2 - 2ab - 2bc + 2ca]`
`= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - a^2 - b^2 - c^2 + 2ab + 2bc - 2ca`
= 4ab + 4bc
`∴ (a + b + c)^2 - (a - b + c)^2 = 4ab + 4bc`
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Expand the following, using suitable identity:
(x + 2y + 4z)2
Expand the following, using suitable identity:
(2x – y + z)2
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Write the following cube in expanded form:
`[3/2x+1]^3`
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write in the expanded form: (-2x + 3y + 2z)2
If a + b = 10 and ab = 21, find the value of a3 + b3
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Find the following product:
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(2a+3) (2a−3)
Evaluate: 20.8 × 19.2
Find the squares of the following:
3p - 4q2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Expand the following:
(4a – b + 2c)2