Advertisements
Advertisements
प्रश्न
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
उत्तर
We have
`[2x^2 - 4x^2 + 1][2x^4 - 4x^2 - 1]`
`=> [(2x^4 - 4x^2)^2 - (1)^2] [∵ (a + b)(a - b) = a^2 - b^2]`
`=> [(2x^4)^2 + (4x^2)^2 - 2(2x^4)(4x^2) - 1]`
`=> 4x^8 + 16^4 - 16x^6 - 1 [∵ (a - b)^2 = a^2 + b^2 - 2ab]`
`=> 4x^8 - 16x^6 + 16x^4 - 1`
`∴ [2x^4 - 4x^2 + 1][2x^4 - 4x^2 - 1] = 4x^8 - 16x^6 + 16x^4 - 1`
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Find the cube of the following binomials expression :
\[4 - \frac{1}{3x}\]
If a − b = 4 and ab = 21, find the value of a3 −b3
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
(a − b)3 + (b − c)3 + (c − a)3 =
If a2 + b2 + c2 − ab − bc − ca =0, then
Find the square of : 3a + 7b
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Evaluate: (5xy − 7) (7xy + 9)
If x + y = 1 and xy = -12; find:
x2 - y2.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Which one of the following is a polynomial?