Advertisements
Advertisements
प्रश्न
If a − b = 4 and ab = 21, find the value of a3 −b3
उत्तर
In the given problem, we have to find the value of `a^3 - b^3`
Given `a-b = -4,ab = 21`
We shall use the identity `(a-b)^3 = a^3- b^3 - 3ab(a-b)`
Here putting, a-b = - 4,ab = 21,
`(4)^3 = a^3 - b^3 - 3 (21) (4)`
`64 = a^3 - b^3 - 252`
`64 + 252 = a^3 -b^3`
`316 = a^3 - b^3`
Hence the value of `a^3 -b^3` is 316.
APPEARS IN
संबंधित प्रश्न
Factorise:
27x3 + y3 + z3 – 9xyz
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Write in the expanded form:
`(2 + x - 2y)^2`
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Simplify of the following:
(x+3)3 + (x−3)3
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
Find the square of : 3a + 7b
If a + b = 7 and ab = 10; find a - b.
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Evaluate: `(4/7"a"+3/4"b")(4/7"a"-3/4"b")`
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(2x + 3y) (2x - 3y)
Evaluate the following without multiplying:
(999)2
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If x + y = 1 and xy = -12; find:
x - y
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Using suitable identity, evaluate the following:
1033