Advertisements
Advertisements
प्रश्न
If x + y = 1 and xy = -12; find:
x - y
उत्तर
(x + y)2 = (1)2
⇒ x2 + y2 + 2xy
= 1
⇒ x2 + y2
= 1 - 2(-12)
= 1 + 24
= 25
Now, (x - y)2
= x2 + y2 - 2xy
= 25 - 2(-12)
= 25 + 24
= 49
⇒ x - y
= ±7.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(3a – 7b – c)2
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Use the direct method to evaluate :
(4+5x) (4−5x)
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Expand the following:
(3a – 2b)3