Advertisements
Advertisements
प्रश्न
Expand the following:
(3a – 2b)3
उत्तर
(3a – 2b)3 = (3a)3 – (2b)3 – 3(3a)(2b)(3a – 2b) ...[Using identity, (a – b)3 = a3 – b3 – 3ab(a – b)]
= 27a3 – 8b3 – 18ab(3a – 2b)
= 27a3 – 8b3 – 54a2b + 36ab2
= 27a3 – 54a2b + 36ab2 – 8b3
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Write the following cube in expanded form:
(2a – 3b)3
Factorise the following:
27 – 125a3 – 135a + 225a2
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Write the expanded form:
`(-3x + y + z)^2`
Write in the expanded form (a2 + b2 + c2 )2
Simplify: `(a + b + c)^2 - (a - b + c)^2`
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If x + \[\frac{1}{x}\] = then find the value of \[x^2 + \frac{1}{x^2}\].
If \[3x + \frac{2}{x} = 7\] , then \[\left( 9 x^2 - \frac{4}{x^2} \right) =\]
If a2 + b2 + c2 − ab − bc − ca =0, then
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Use the direct method to evaluate :
(4+5x) (4−5x)
Evaluate: (4 − ab) (8 + ab)
Expand the following:
(a + 3b)2
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.