Advertisements
Advertisements
प्रश्न
Write the following cube in expanded form:
(2a – 3b)3
उत्तर
It is known that,
(a + b)3 = a3 + b3 + 3ab(a + b) and (a − b)3 = a3 − b3 − 3ab(a − b)
(2a − 3b)3 = (2a)3 − (3b)3 – (3 × 2a × 3b)(2a – 3b)
= 8a3 – 27b3 – 18ab(2a – 3b)
= 8a3 – 27b3 – 36a2b + 54ab2
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Simplify: `(a + b + c)^2 - (a - b + c)^2`
Evaluate of the following:
(598)3
Evaluate of the following:
1043 + 963
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If a − b = −8 and ab = −12, then a3 − b3 =
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
\[\frac{( a^2 - b^2 )^3 + ( b^2 - c^2 )^3 + ( c^2 - a^2 )^3}{(a - b )^3 + (b - c )^3 + (c - a )^3} =\]
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Find the square of : 3a - 4b
Evalute : `((2x)/7 - (7y)/4)^2`
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Simplify by using formula :
(a + b - c) (a - b + c)
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
Simplify:
(7a +5b)2 - (7a - 5b)2