Advertisements
Advertisements
प्रश्न
Evaluate of the following:
(598)3
उत्तर
In the given problem, we have to find the value of numbers
Given (598)3
In order to find (598)3we are using identity `(a-b)^3 = a^3 - b^3 - 3ab (a-b)`
We can write (598)3 as `(600 - 2)^3`
Hence where a = 600 , b = 2
(598)3 ` = (600 - 2)^3`
` = (600)^3 - (2)^3 - 3(600)(2) (600 - 2)`
` = 216000000 - 8 - 3600 xx 598`
` = 216000000 - 8 - 2152800`
` = 216000000 - 2152808`
` = 213847192`
The value of (598)3 is 213847192.
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(2x – y + z)2
Evaluate the following using identities:
`(2x+ 1/x)^2`
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
Simplify of the following:
(x+3)3 + (x−3)3
Find the following product:
Find the following product:
(2ab − 3b − 2c) (4a2 + 9b2 +4c2 + 6 ab − 6 bc + 4ca)
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x + \frac{1}{x} = 3\] then find the value of \[x^6 + \frac{1}{x^6}\].
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
If x + y = 9, xy = 20
find: x - y
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Factorise the following:
9y2 – 66yz + 121z2
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6