Advertisements
Advertisements
प्रश्न
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
उत्तर
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
On rearranging we get,
⇒ `(x/2 - 2/5)[-(x/2 - 2/5)] - x^2 + 2x`
⇒ `- (x/2 - 2/5)^2 - x^2 + 2x`
We shall use the identity (x − y)2 = x2 − 2xy + y2
By substituting `x = x/2, y = 2/5`
⇒ `- [(x/2)^2 - 2(x/2)(2/5) + (2/5)^2] - x^2 + 2x`
⇒ `- [x^2/4 - (2x)/5 + 4/25] - x^2 + 2x`
⇒ `- [x^2/4 - (2x)/5 + 4/25] - x^2 + 2x`
⇒ `- x^2/4 + (2x)/5 - 4/25 - x^2 + 2x`
⇒ `- x^2/4 - x^2 - 4/25 + (2x)/5 + 2x`
⇒ `[- x^2/4 - x^2] - 4/25 + [(2x)/5 + 2x]`
⇒ `[- x^2/4 - x^2] - 4/25 + [(2x)/5 + 2x]`
⇒ `[- x^2/4 - (4x^2)/4] - 4/25 + [(2x)/5 + (10x)/5]`
⇒ `[(- x^2 - 4x^2)/4] - 4/25 + [(2x + 10x)/5]`
⇒ `(- 5x^2)/4 - 4/25 + (12x)/5`
Hence, the value of `(- 5x^2)/4 - 4/25 + (12x)/5`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
103 × 107
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
Write in the expanded form: `(x + 2y + 4z)^2`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
Evaluate:
253 − 753 + 503
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Use the direct method to evaluate the following products :
(5a + 16) (3a – 7)
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Expand the following:
(2p - 3q)2
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
Simplify (2x – 5y)3 – (2x + 5y)3.