Advertisements
Advertisements
प्रश्न
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
उत्तर
We have,
`[x^2 - x + 1]^2 - [x^2 + x + 1]^2`
`= [(x^2)^2 + (-x)^2 + 1^2 + 2(x^2)(-x) + 2(-x)(1) + 2x^2 (1)] - [(x^2)^2 + (x)^2 + (1)^2 + 2x^2 (x) + 2(x)(1) + 2(x^2)(1)]`
`= x^4 + x^2 + 1 - 2x^3 - 2x + 2x^2 - x^2 - x^4 - 1 - 2x^3 - 2x - 2x^2`
`[∵ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca]`
`= -4x^3 - 4x`
`= -4x [x^2 + 1]`
`∴ [x^2 - x + 1]^2 - [x^2 + x + 1]^2 = -4x[x^2 + 1]`
APPEARS IN
संबंधित प्रश्न
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Write in the expanded form:
`(m + 2n - 5p)^2`
If a2 + b2 + c2 = 16 and ab + bc + ca = 10, find the value of a + b + c.
Evaluate of the following:
(598)3
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
Use identities to evaluate : (101)2
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Use the direct method to evaluate :
(3b−1) (3b+1)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If a - b = 10 and ab = 11; find a + b.
If x + y = 9, xy = 20
find: x - y
If x + y = 9, xy = 20
find: x2 - y2.
If p + q = 8 and p - q = 4, find:
p2 + q2
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
The value of 2492 – 2482 is ______.
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz