Advertisements
Advertisements
प्रश्न
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
विकल्प
76
52
64
none of these
उत्तर
Given `x^4 +1/x^4 = 194`
Using identity `(a+b)^2 = a^2+2ab+b^2`
Here, `a= x^2 , b = 1/x^2`
`(x^2 +1/x^2 )^2 = (x^2)^2 + 2 xx x^2 xx 1/x^2 +1/(x^2)^2`
`(x^2 + 1/x^2 )^2 = x^4 +1/x^4 +2`
`(x^2+1/x^2)^2 = 194 +2`
`(x^2+1/x^2)^2 = 196`
`(x^2+1/x^2)(x^2+1/x^2)^2 = 14 xx14`
`x^2+1/x^2 = 14`
Again using identity `(a+b)^2 = a^2 +2ab +b^2`
Here `a=x,b=1/x`
`(x+1/x)^2 = (x)^2 + 2 xx x xx 1/x +1/(x)^2`
`(x+1/x)^2 = x^2 + 2 + 1/x^2`
Substituting `x^2 +1/x^2 = 14`
`(x+1/x)^2 = 14 +2`
`(x+1/x)^2 = 16`
`x+1/x = 4`
Using identity `a^3 +b^3 = (a+b)(a^2 - ab +b^2)`
Here `a= x^3, b= 1/x^3`
`x^3 +1/x^3 = (x+1/x)(x^2 - x xx 1/x+1/x^2)`
`x^3 +1/x^3 = (4)(-1 +14)`
`x^3 +1/x^3 = (4)(13)`
`x^3 +1/x^3 = 52`
Hence the value of `x^3 +1/x^3`is 52.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Use suitable identity to find the following product:
(3x + 4) (3x – 5)
Evaluate the following product without multiplying directly:
104 × 96
Expand the following, using suitable identity:
`[1/4a-1/2b+1]^2`
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Evaluate of the following:
(598)3
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Evaluate: (6 − 5xy) (6 + 5xy)
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If `"p" + (1)/"p" = 6`; find : `"p"^2 + (1)/"p"^2`
Simplify:
(4x + 5y)2 + (4x - 5y)2
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Evaluate the following :
7.16 x 7.16 + 2.16 x 7.16 + 2.16 x 2.16
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.