Advertisements
Advertisements
प्रश्न
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
पर्याय
76
52
64
none of these
उत्तर
Given `x^4 +1/x^4 = 194`
Using identity `(a+b)^2 = a^2+2ab+b^2`
Here, `a= x^2 , b = 1/x^2`
`(x^2 +1/x^2 )^2 = (x^2)^2 + 2 xx x^2 xx 1/x^2 +1/(x^2)^2`
`(x^2 + 1/x^2 )^2 = x^4 +1/x^4 +2`
`(x^2+1/x^2)^2 = 194 +2`
`(x^2+1/x^2)^2 = 196`
`(x^2+1/x^2)(x^2+1/x^2)^2 = 14 xx14`
`x^2+1/x^2 = 14`
Again using identity `(a+b)^2 = a^2 +2ab +b^2`
Here `a=x,b=1/x`
`(x+1/x)^2 = (x)^2 + 2 xx x xx 1/x +1/(x)^2`
`(x+1/x)^2 = x^2 + 2 + 1/x^2`
Substituting `x^2 +1/x^2 = 14`
`(x+1/x)^2 = 14 +2`
`(x+1/x)^2 = 16`
`x+1/x = 4`
Using identity `a^3 +b^3 = (a+b)(a^2 - ab +b^2)`
Here `a= x^3, b= 1/x^3`
`x^3 +1/x^3 = (x+1/x)(x^2 - x xx 1/x+1/x^2)`
`x^3 +1/x^3 = (4)(-1 +14)`
`x^3 +1/x^3 = (4)(13)`
`x^3 +1/x^3 = 52`
Hence the value of `x^3 +1/x^3`is 52.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Write the following cube in expanded form:
(2x + 1)3
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Evaluate the following using identities:
`(2x+ 1/x)^2`
Evaluate the following using identities:
(0.98)2
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
Simplify the following
`(7.83 + 7.83 - 1.17 xx 1.17)/6.66`
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
Evaluate of the following:
(103)3
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Simplify of the following:
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
Expand the following:
(a + 3b)2
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
Simplify:
(3a + 2b - c)(9a2 + 4b2 + c2 - 6ab + 2bc +3ca)