Advertisements
Advertisements
प्रश्न
Evaluate the following using identities:
`(2x+ 1/x)^2`
उत्तर
In the given problem, we have to evaluate expressions by using identities.
Given `[2x - 1/x]^2`
We shall use the identity `(a - b)^2 = a^2 - 2ab + b^2`
Here a = 2x
`b = 1/x`
By applying identity we get
`[2x - 1/x]^2 = (2x)^2 + (1/x)^2 - 2 xx 2 xx x xx 1/x`
`= (2x xx 2x) + (1/x xx 1/x) - 2 xx 2 xx x xx 1/x`
` = 4x^2 + 1/x^2 - 4`
Hence the value of `[2x - 1/x]^2 is [4x^2 + 1/x^2 - 4]`
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2x + 1)3
Factorise the following:
64m3 – 343n3
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Evaluate the following:
(98)3
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
If a + b = 7 and ab = 10; find a - b.
Evaluate: (9 − y) (7 + y)
Expand the following:
(a + 4) (a + 7)
Simplify by using formula :
(5x - 9) (5x + 9)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
Evaluate the following without multiplying:
(103)2
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
Simplify:
(3a - 7b + 3)(3a - 7b + 5)