Advertisements
Advertisements
प्रश्न
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
उत्तर
In the given problem, we have to find the value of `27x^3 + 8y^3`
Given `3x + 2y = 14, xy = 8`
On cubing both sides we get,
`(3x+ 2y)^3 = (14)^3`
We shall use identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
`27x^3 + 8y^3 + 3(3x) (2y) (3x+ 2y) = 14 xx 14 xx 14`
`27x^3 + 8y^3 +18(xy)(3x+2y) = 14 xx 14 xx 14`
`27x^3 + 8y^3 + 18(8)(14) = 2744`
`27x^3 + 8y^3 + 2016 = 2744`
` 27x^3 + 8y^3 = 2744 -2016`
`27x^3 +8y^3 = 728`
Hence the value of `27x^3 +8y^3`is 728.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2x + 1)3
Evaluate the following using suitable identity:
(998)3
Evaluate the following using identities:
`(a^2b - b^2a)^2`
Evaluate the following using identities:
(0.98)2
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Evaluate: (2 − z) (15 − z)
Expand the following:
(m + 8) (m - 7)
Expand the following:
(x - 3y - 2z)2
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
If x + y = 1 and xy = -12; find:
x2 - y2.
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Using suitable identity, evaluate the following:
101 × 102
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz