Advertisements
Advertisements
Question
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
Solution
In the given problem, we have to find the value of `27x^3 + 8y^3`
Given `3x + 2y = 14, xy = 8`
On cubing both sides we get,
`(3x+ 2y)^3 = (14)^3`
We shall use identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
`27x^3 + 8y^3 + 3(3x) (2y) (3x+ 2y) = 14 xx 14 xx 14`
`27x^3 + 8y^3 +18(xy)(3x+2y) = 14 xx 14 xx 14`
`27x^3 + 8y^3 + 18(8)(14) = 2744`
`27x^3 + 8y^3 + 2016 = 2744`
` 27x^3 + 8y^3 = 2744 -2016`
`27x^3 +8y^3 = 728`
Hence the value of `27x^3 +8y^3`is 728.
APPEARS IN
RELATED QUESTIONS
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Evaluate the following using identities:
(399)2
Evaluate the following using identities:
117 x 83
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Use identities to evaluate : (101)2
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use the direct method to evaluate :
(2+a) (2−a)
Expand the following:
(2p - 3q)2
If x + y = 9, xy = 20
find: x - y
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If p + q = 8 and p - q = 4, find:
pq
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a"^2 - (1)/"a"^2`
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
Simplify:
(x + y - z)2 + (x - y + z)2
Using suitable identity, evaluate the following:
101 × 102