Advertisements
Advertisements
प्रश्न
Find the value of 27x3 + 8y3, if 3x + 2y = 14 and xy = 8
उत्तर
In the given problem, we have to find the value of `27x^3 + 8y^3`
Given `3x + 2y = 14, xy = 8`
On cubing both sides we get,
`(3x+ 2y)^3 = (14)^3`
We shall use identity `(a+b)^3 = a^3 + b^3 + 3ab(a+b)`
`27x^3 + 8y^3 + 3(3x) (2y) (3x+ 2y) = 14 xx 14 xx 14`
`27x^3 + 8y^3 +18(xy)(3x+2y) = 14 xx 14 xx 14`
`27x^3 + 8y^3 + 18(8)(14) = 2744`
`27x^3 + 8y^3 + 2016 = 2744`
` 27x^3 + 8y^3 = 2744 -2016`
`27x^3 +8y^3 = 728`
Hence the value of `27x^3 +8y^3`is 728.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
103 × 107
Expand the following, using suitable identity:
(x + 2y + 4z)2
Evaluate the following using suitable identity:
(998)3
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 3x2 – 12x |
Evaluate the following using identities:
(2x + y) (2x − y)
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
Evaluate of the following:
933 − 1073
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If a − b = −8 and ab = −12, then a3 − b3 =
75 × 75 + 2 × 75 × 25 + 25 × 25 is equal to
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If a2 - 3a + 1 = 0, and a ≠ 0; find:
- `a + 1/a`
- `a^2 + 1/a^2`
Use the direct method to evaluate :
(ab+x2) (ab−x2)
Evaluate: (4 − ab) (8 + ab)
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Simplify:
(7a +5b)2 - (7a - 5b)2
Which one of the following is a polynomial?