Advertisements
Advertisements
प्रश्न
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
उत्तर
In the given problem, we have to find the value of `x^2 + 1/x^2 , x^3 + 1/x^3 , x^4 +1/x^4`
Given `x+1/x = 3`
We shall use the identity `(x+y)^2 = x^2 +y^2 + 2xy`
Here putting `x+1/x = 3`,
`(x+1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`(3)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
` 9 = x^2 + 1/x^2 + 2`
`9-2 = x^2 + 1/x^2`
` 7 = x^2 + 1/x^2`
Again squaring on both sides we get,
`(x^2 + 1/x^2)^2 = (7)^2`
We shall use the identity `(x+y )^2 = x^2 + y^2+2xy`
`(x^2 + 1/x^2)^2= x^4 + 1/x^4 + 2xx x^2 xx 1/x^2`
`(7)^2 =x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`49 = x^4 + 1/x^4 + 2`
`49 - 2 = x^4 + 1/x^4`
`47 = x^4 + 1/x^4`
Again cubing on both sides we get,
`(x+ 1/x)^3 = (3)^3`
We shall use identity `(a+b)^3 = a^3+ b^3 + 3ab(a+b)`
`(x+1/x)^3 = x^3+ 1/x^3 + 3xx x xx 1/x(x + 1/x)`
`(3)^3 = x^3 + 1/x^3+ 3 xx x xx 1/x xx 3`
`27 = x^3 + 1/x^3 + 9`
`27-9 = x^3 + 1/x^3`
` 18 = x^3 + 1/x^3`
Hence the value of `x^2 + 1/x^2 ,x^3+ 1/x^3, x^4 + 1/x^4`is 7,18,47 respectively.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[3/2x+1]^3`
Evaluate the following using identities:
(399)2
Simplify the following: 175 x 175 x 2 x 175 x 25 x 25 x 25
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Use identities to evaluate : (101)2
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Use the direct method to evaluate :
(3b−1) (3b+1)
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Evaluate: (5xy − 7) (7xy + 9)
Expand the following:
(a + 3b)2
Simplify by using formula :
(x + y - 3) (x + y + 3)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If p + q = 8 and p - q = 4, find:
p2 + q2
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Multiply x2 + 4y2 + z2 + 2xy + xz – 2yz by (–z + x – 2y).
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).