Advertisements
Advertisements
Question
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Solution
In the given problem, we have to find the value of `x^2 + 1/x^2 , x^3 + 1/x^3 , x^4 +1/x^4`
Given `x+1/x = 3`
We shall use the identity `(x+y)^2 = x^2 +y^2 + 2xy`
Here putting `x+1/x = 3`,
`(x+1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`(3)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
` 9 = x^2 + 1/x^2 + 2`
`9-2 = x^2 + 1/x^2`
` 7 = x^2 + 1/x^2`
Again squaring on both sides we get,
`(x^2 + 1/x^2)^2 = (7)^2`
We shall use the identity `(x+y )^2 = x^2 + y^2+2xy`
`(x^2 + 1/x^2)^2= x^4 + 1/x^4 + 2xx x^2 xx 1/x^2`
`(7)^2 =x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`49 = x^4 + 1/x^4 + 2`
`49 - 2 = x^4 + 1/x^4`
`47 = x^4 + 1/x^4`
Again cubing on both sides we get,
`(x+ 1/x)^3 = (3)^3`
We shall use identity `(a+b)^3 = a^3+ b^3 + 3ab(a+b)`
`(x+1/x)^3 = x^3+ 1/x^3 + 3xx x xx 1/x(x + 1/x)`
`(3)^3 = x^3 + 1/x^3+ 3 xx x xx 1/x xx 3`
`27 = x^3 + 1/x^3 + 9`
`27-9 = x^3 + 1/x^3`
` 18 = x^3 + 1/x^3`
Hence the value of `x^2 + 1/x^2 ,x^3+ 1/x^3, x^4 + 1/x^4`is 7,18,47 respectively.
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
4y2 – 4y + 1
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Evaluate the following using identities:
`(2x+ 1/x)^2`
Write in the expanded form: (ab + bc + ca)2
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Simplify of the following:
(x+3)3 + (x−3)3
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate: 20.8 × 19.2
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
If p + q = 8 and p - q = 4, find:
p2 + q2
If m - n = 0.9 and mn = 0.36, find:
m + n
If x + y = 1 and xy = -12; find:
x - y
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.