Advertisements
Advertisements
Question
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Solution
Given x + y + x = p and xy ++ yz + zx = q
(x + y + x)2
= x2 + y2 + z2 + 2xy + 2yz + 2zx
⇒ x2 + y2 + z2
= (x + y + z)2 - 2xy + 2yz + 2zx
⇒ x2 + y2 + z2
= (x + y + z)2 - 2(xy + yz + zx)
⇒ x2+ y2 + z2
= (p)2 - 2(q)
⇒ x2 + y2 + z2
= p2 - 2q.
APPEARS IN
RELATED QUESTIONS
Expand the following, using suitable identity:
(3a – 7b – c)2
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Without actually calculating the cubes, find the value of the following:
(–12)3 + (7)3 + (5)3
Write in the expanded form:
(2a - 3b - c)2
Find the following product:
If x + y + z = 8 and xy +yz +zx = 20, find the value of x3 + y3 + z3 −3xyz
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate :
`("a"/2-"b"/3)("a"/2+"b"/3)`
Expand the following:
`(2"a" + 1/(2"a"))^2`
Simplify by using formula :
(x + y - 3) (x + y + 3)