Advertisements
Advertisements
Question
Find the following product:
Solution
Given `(x^2 - 1) (x^4+x^2 + 1)`
We shall use the identity `(a-b) (a^2 + ab + b^2) = a^3 - b^3`
We can rearrange the `(x^2 - 1)(x^4 + x^2 + 1)`as
\[\left( x^2 - 1 \right)\left[ \left( x^2 \right)^2 + \left( x^2 \right)\left( 1 \right) + \left( 1 \right)^2 \right]\]
`= (x^2)^3 - (1)^3`
` = (x^2) xx(x^2) xx (x^2) - (1) xx (1) xx (1)`
` = x^6 - 1^3`
` = x^6 - 1`
Hence the Product value of `(x^2 - 1) (x^4 +x^2 + 1)`is `x^6 - 1`.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(x + 8) (x – 10)
Write the following cube in expanded form:
`[3/2x+1]^3`
Evaluate the following using identities:
`(2x+ 1/x)^2`
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Find the cube of the following binomials expression :
\[\frac{3}{x} - \frac{2}{x^2}\]
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
(9y2 − 4x2) (81y4 +36x2y2 + 16x4)
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[x + \frac{1}{x}\] 4, then \[x^4 + \frac{1}{x^4} =\]
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Expand the following:
(a + 3b)2
Expand the following:
`(2"a" + 1/(2"a"))^2`
If m - n = 0.9 and mn = 0.36, find:
m + n
If x + y = 1 and xy = -12; find:
x2 - y2.
Factorise the following:
9x2 + 4y2 + 16z2 + 12xy – 16yz – 24xz
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz