Advertisements
Advertisements
Question
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
Solution
We have,
`(3x + 5y)^2 = (3x)^2 + (5y)^2 + 2 xx 3x xx 5y`
`=> (3x + 5y)^2 = 9x^2 + 25y^2 + 30xy`
`= 181 + 30(-6)` [∵ `9x^2 + 25y^2 = 181` and xy = -6]
= 181 - 180
`=> (3x + 5y)^2 = 1`
`=> (3x + 5y)^2 = (-+1)^2`
`=> 3x + 5y = +-1`
APPEARS IN
RELATED QUESTIONS
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Write the following cube in expanded form:
`[3/2x+1]^3`
Factorise the following:
64m3 – 343n3
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Write in the expanded form: (-2x + 3y + 2z)2
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If a − b = 5 and ab = 12, find the value of a2 + b2
Expand the following:
(2p - 3q)2
Find the squares of the following:
9m - 2n
Simplify by using formula :
(5x - 9) (5x + 9)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
Evaluate, using (a + b)(a - b)= a2 - b2.
15.9 x 16.1
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If x + y = 1 and xy = -12; find:
x2 - y2.
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Expand the following:
`(1/x + y/3)^3`