Advertisements
Advertisements
Question
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
Solution
4.9 x 5.1
= (5 - 0.1) x (5 + 0.1)
= (5)2 - (0.1)2
= 25 - 0.01
= 24.99.
APPEARS IN
RELATED QUESTIONS
Evaluate of the following:
933 − 1073
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If a2 + b2 + c2 − ab − bc − ca =0, then
Evaluate the following without multiplying:
(999)2
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
The coefficient of x in the expansion of (x + 3)3 is ______.