Advertisements
Advertisements
प्रश्न
If 9x2 + 25y2 = 181 and xy = −6, find the value of 3x + 5y
उत्तर
We have,
`(3x + 5y)^2 = (3x)^2 + (5y)^2 + 2 xx 3x xx 5y`
`=> (3x + 5y)^2 = 9x^2 + 25y^2 + 30xy`
`= 181 + 30(-6)` [∵ `9x^2 + 25y^2 = 181` and xy = -6]
= 181 - 180
`=> (3x + 5y)^2 = 1`
`=> (3x + 5y)^2 = (-+1)^2`
`=> 3x + 5y = +-1`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 8) (x – 10)
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Evaluate the following using identities:
`(2x+ 1/x)^2`
Evaluate the following using identities:
(2x + y) (2x − y)
Write in the expanded form (a2 + b2 + c2 )2
Write in the expand form: `(2x - y + z)^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Evaluate of the following:
(103)3
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
Use identities to evaluate : (101)2
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Use the direct method to evaluate :
(3b−1) (3b+1)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
If x + y = 9, xy = 20
find: x - y
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.