Advertisements
Advertisements
प्रश्न
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
विकल्प
1
-1
- \[\frac{1}{2}\]
0
उत्तर
Given `a/b+b/a = -1`
Taking Least common multiple in `a/b +b/a = -1 `we get,
` a/b + b/a -1`
`(axx a)/(b xx a)+(bxxb)/(a xx b) = -1`
`a^2/(ab) + b^2/(ab) = -1`
`(a^2 + b^2)/(ab) = -1 `
`a^2+b^2 = -1 xx ab`
`a^2 +b^2 = -ab`
`a^2 + b^2 + ab = 0`
Using identity `a^3 - b^3= (a-b) (a^2 +ab +b^2)`
`a^3 -b^3 = (a-b)(a^2 + ab+b^2)`
`a^3 -b^3 = (a-b)(0)`
`a^3 - b^3 = 0`
Hence the value of `a^3 - b^2` is 0.
APPEARS IN
संबंधित प्रश्न
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
If \[x^2 + \frac{1}{x^2} = 98\] ,find the value of \[x^3 + \frac{1}{x^3}\]
If 2x+3y = 13 and xy = 6, find the value of 8x3 + 27y3
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Mark the correct alternative in each of the following:
If \[x + \frac{1}{x} = 5\] then \[x^2 + \frac{1}{x^2} = \]
If the volume of a cuboid is 3x2 − 27, then its possible dimensions are
If a + b = 7 and ab = 10; find a - b.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Evaluate: (5xy − 7) (7xy + 9)
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Evaluate: 20.8 × 19.2
Expand the following:
(x - 5) (x - 4)
Expand the following:
(2p - 3q)2
Simplify by using formula :
(2x + 3y) (2x - 3y)
Evaluate the following without multiplying:
(999)2
If `"a" + 1/"a" = 6;`find `"a" - 1/"a"`
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.