Advertisements
Advertisements
प्रश्न
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^2 - 1/x^3`
Given `x^4 + 1/x^4 = 119`
We shall use the identity `(x+y)^2 = x^2 + y^2 + 2xy`
Here putting, `x^4 + 1/x^4 = 119`
`(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`(x^2 + 1/x^2)^2 = x^4 + 1/x^4 + 2 xx x^2 xx 1/x^2`
`(x^2 + 1/x^3 = x^4 + 1/x^2 + 2`
`(x^2 + 1/x^2)^2= 119 + 2`
`(x^2 + 1/x^2)^2 = 121`
`x^2 + 1/x^2^2 = sqrt(11 xx 11)`
`x^2 + 1/x^2^2 = ±11`
In order to find `(x-1/x)`we are using identity `(x-y)^2 = x^2 + y^2 - 2xy`.
\[\left( x - \frac{1}{x} \right)^2 = x^2 + \frac{1}{x^2} - 2 \times x \times \frac{1}{x}\]
`(x-1/x)^2 = x^2 + 1/x^2 - 2`
`(x-1/x)^2 =11 - 2`
`(x-1/x)^2 = 9`
`(x-1/x) =sqrt9`
`(x-1/x)=sqrt9`
`(x-1/x) =sqrt(3 xx 3)`
`(x-1/x)= ± 3 `
In order to find `x^3 - 1/x^3` we are using identity `a^3 - b^3 = (a-b)(a^2 + b^2 + ab)`
`x^3 - 1/x^3 = (x- 1/x)(x^2 + 1/x^2 + x xx 1/x)`
+ x xx )`Here `x^2 + 1/x^2 = 11` and `(x - 1/x) = 3`
`x^3 - 1/x^3 = (x-1/x)(x^2+ 1/x^2 + x xx 1/x)`
` = 3(11+1)`
` = 3 xx 12`
` = 36`
Hence the value of `x^3 - 1/x^3`is 36.
APPEARS IN
संबंधित प्रश्न
Evaluate the following using identities:
(399)2
Simplify the following:
322 x 322 - 2 x 322 x 22 + 22 x 22
Simplify the following products:
`(m + n/7)^3 (m - n/7)`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Write in the expanded form:
`(2 + x - 2y)^2`
Write in the expand form: `(2x - y + z)^2`
Write in the expanded form: (-2x + 3y + 2z)2
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
If a2 + b2 + c2 − ab − bc − ca =0, then
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate :
(x+1) (x−1)
Expand the following:
(2p - 3q)2
Evaluate the following without multiplying:
(1005)2
If x + y = 1 and xy = -12; find:
x2 - y2.
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If x + y + z = p and xy + yz + zx = q; find x2 + y2 + z2.
Expand the following:
(4a – b + 2c)2