Advertisements
Advertisements
प्रश्न
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
उत्तर
In the given problem, we have to find the value of (3x + 2y) (9x2 − 6xy + 4y2)
Given (3x + 2y) (9x2 − 6xy + 4y2)
We shall use the identity `a^3 + b^3 = (a+b)(a^2 + b^2 - ab)`
We can rearrange the `(3x + 2y)(9x^3 - 6xy + 4y^2)`as
` = (3x + 2y)[(3x)^2 - (3x)(2y)+(2y)^2]`
` = (3x)^2 + (2y)^3`
` = (3x) xx (3x) xx (3x) + (2y) xx 2y xx (2y)`
` = 27x^3 + 8y^3`
Hence the Product value of `(3x+ 2y) (9x^2 - 6xy + 4y^2)`is `27x^3 + 8y^3`.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
(2a – 3b)3
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Evaluate the following using identities:
117 x 83
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Evaluate of the following:
`(10.4)^3`
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Use identities to evaluate : (101)2
Evalute : `( 7/8x + 4/5y)^2`
The difference between two positive numbers is 5 and the sum of their squares is 73. Find the product of these numbers.
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
Evaluate the following without multiplying:
(95)2
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"a" - 1/"a" = 10`; find `"a"^2 - 1/"a"^2`
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Factorise the following:
9y2 – 66yz + 121z2
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Expand the following:
(3a – 2b)3