Advertisements
Advertisements
प्रश्न
Evaluate the following using identities:
117 x 83
उत्तर
The given expression is 117 x 83
We have
`(117 + 83)/2 = 200/2`
= 100
So we can express 117 and 83 in the terms of 100 as
117 = 100 + 17
83 = 100 - 17
117 x 83 = (100 + 17)(100 - 17)
We shall use the identity `(x - y)(x + y) = x^2 - y^2`
Here
(x + y) = 100 + 17
(x - y) = 100 - 17
By applying in identity we get
`(100 + 17)(100 - 17) = (100)^2 - (17)^2`
= 10000 - 289
= 9711
Hence the value of 1117 x 83 is 9711
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
4y2 – 4y + 1
Evaluate of the following:
(99)3
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{7} + \frac{y}{3} \right) \left( \frac{x^2}{49} + \frac{y^2}{9} - \frac{xy}{21} \right)\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
If a + b = 7 and ab = 12, find the value of a2 + b2
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Evalute : `( 7/8x + 4/5y)^2`
If a + `1/a`= 6 and a ≠ 0 find :
(i) `a - 1/a (ii) a^2 - 1/a^2`
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Expand the following:
(2p - 3q)2
Simplify by using formula :
(2x + 3y) (2x - 3y)
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Simplify (2x – 5y)3 – (2x + 5y)3.