Advertisements
Advertisements
प्रश्न
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
उत्तर
In the given problem, we have to find the value of equation using identity
Given \[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
We shall use the identity, `a^3 + b^3 = (a+ b) (a^2 - ab + b^2)`
We can rearrange the \[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]as
`= (5/x + 5x)[(5/x)^2 + (5x)^2 - (5/x)(5x)]`
` =(5/x)^3 + (5x)^3 `
` = (5/x) xx (5/x) xx (5/x) + (5x)xx (5x)xx(5x)`
` = 125/x^3 + 125x^3`
Now substituting the value x = 3 in `125/x^3 + 125x^3`
`= 125/x^3 + 125x^3`
`= 125/3^3 + 125 xx 3^3`
`= 125/27 + 125 xx 27`
`= 125/27 + 3375`
Taking Least common multiple, we get
` = 125 / 27 + (3375 xx 27)/(1xx 27)`
`= 125/27 + 91125/27`
` = (125 + 91125)/27`
` = 91250/27`
Hence the Product value of \[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\] is ` = 91250/27`.
APPEARS IN
संबंधित प्रश्न
if `x + 1/x = 11`, find the value of `x^2 + 1/x^2`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write in the expanded form:
`(m + 2n - 5p)^2`
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Evaluate of the following:
1043 + 963
Find the following product:
(4x − 3y + 2z) (16x2 + 9y2 + 4z2 + 12xy + 6yz − 8zx)
If \[x^3 + \frac{1}{x^3} = 110\], then \[x + \frac{1}{x} =\]
If a - b = 7 and ab = 18; find a + b.
The number x is 2 more than the number y. If the sum of the squares of x and y is 34, then find the product of x and y.
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If a - b = 10 and ab = 11; find a + b.
If p + q = 8 and p - q = 4, find:
pq
If x + y = 1 and xy = -12; find:
x - y
Simplify:
(7a +5b)2 - (7a - 5b)2
If `x/y + y/x = -1 (x, y ≠ 0)`, the value of x3 – y3 is ______.
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Using suitable identity, evaluate the following:
101 × 102
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3