Advertisements
Advertisements
प्रश्न
Write in the expanded form:
`(m + 2n - 5p)^2`
उत्तर
We have
`(m + 2n - 5p)^2 = m^2 + (2n)^2 + (-5p)^2 + 2(m)(2n) + 2(2n)(-5p) + 2(m)(-5p)`
`[∵ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca]`
` = m^2 + 4n^2 + 25p^2 + 4mn - 20np - 10pm`
`∴ (m + n - 5p)^2 = m^2 + 4n^2 + 25p^2 + 4mn - 20np - 10 "pm"`
APPEARS IN
संबंधित प्रश्न
Give possible expression for the length and breadth of the following rectangle, in which their area is given:
Area : 35y2 + 13y – 12 |
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
If a + b + c = 9 and a2+ b2 + c2 =35, find the value of a3 + b3 + c3 −3abc
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If a1/3 + b1/3 + c1/3 = 0, then
If a2 - 5a - 1 = 0 and a ≠ 0 ; find:
- `a - 1/a`
- `a + 1/a`
- `a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Use the direct method to evaluate :
(4+5x) (4−5x)
Expand the following:
(3x + 4) (2x - 1)
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
Simplify:
(2x - 4y + 7)(2x + 4y + 7)
Using suitable identity, evaluate the following:
1033
Expand the following:
(3a – 5b – c)2