Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x- 1/x = 5`
We shall use the identity `(a- b)^3 = a^3 -b^3 - 3ab(a-b)`
Here putting, `x- 1/x = 5`,
`(x-1/x)^3 = x^3 -1/x^3 -3 (x xx 1/x)(x- 1/x)`
`(5)^3 = x^3 - 1/x^3 -3 (x xx 1/x) (x-1/x)`
`125 = x^3 - 1/x^3 - 3 (x - 1/x)`
`125 = x^3 -1 /x^3 - 3 xx 5 `
`125 = x^3 -1 /x^3 -15 `
`125 +15= x^3 -1 /x^3 `
`140 = x^3 -1 /x^3 `
Hence the value of `x^3 -1 /x^3 ` is 140.
APPEARS IN
संबंधित प्रश्न
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Simplify (2x + p - c)2 - (2x - p + c)2
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
Find the following product:
(3x + 2y) (9x2 − 6xy + 4y2)
Find the following product:
\[\left( \frac{3}{x} - \frac{5}{y} \right) \left( \frac{9}{x^2} + \frac{25}{y^2} + \frac{15}{xy} \right)\]
Evaluate:
483 − 303 − 183
If a - b = 4 and a + b = 6; find
(i) a2 + b2
(ii) ab
Use the direct method to evaluate :
`(3/5"a"+1/2)(3/5"a"-1/2)`
Evaluate: `(3"x"+1/2)(2"x"+1/3)`
Evaluate: 203 × 197
If a - b = 10 and ab = 11; find a + b.
If x + y = 1 and xy = -12; find:
x2 - y2.
Simplify:
(3x + 5y + 2z)(3x - 5y + 2z)
Factorise the following:
25x2 + 16y2 + 4z2 – 40xy + 16yz – 20xz
Without actually calculating the cubes, find the value of:
(0.2)3 – (0.3)3 + (0.1)3