Advertisements
Advertisements
प्रश्न
If \[x - \frac{1}{x} = 7\] ,find the value of \[x^3 - \frac{1}{x^3}\]
उत्तर
In the given problem, we have to find the value of `x^3 - 1/x^3`
Given `x- 1/x = 7`
We shall use the identity `(a-b)^3 = a^3 - b^3 - 3ab(a-b)`
Here putting, `x- 1/x = 7`,
`(x - 1/x)^3 = x^3 - 1/x^3 -3 (x xx 1/x)(x-1/x)`
`(7)^3 = x^3 - 1/x^3 - 3 (x xx 1/x ) (x-1/x)`
` 343 = x^3 - 1/x^3 -3 (x - 1/x)`
` 343 = x^3 - 1/x^3 -3 xx 7 `
` 343 = x^3 - 1/x^3 - 21`
` 343 + 21 = x^3 - 1/x^3`
` 343 = x^3 - 1/x^3`
Hence the value of `x^3 - 1/x^3` is 364 .
APPEARS IN
संबंधित प्रश्न
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
Evaluate the following using identities:
(399)2
Prove that a2 + b2 + c2 − ab − bc − ca is always non-negative for all values of a, b and c
Find the value of 4x2 + y2 + 25z2 + 4xy − 10yz − 20zx when x = 4, y = 3 and z = 2.
If \[x + \frac{1}{x} = 3\], calculate \[x^2 + \frac{1}{x^2}, x^3 + \frac{1}{x^3}\] and \[x^4 + \frac{1}{x^4}\]
Find the following product:
(4x − 5y) (16x2 + 20xy + 25y2)
Find the following product:
If \[a^2 + \frac{1}{a^2} = 102\] , find the value of \[a - \frac{1}{a}\].
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(b – 3) (b – 5)
Evaluate: (6 − 5xy) (6 + 5xy)
If a - b = 10 and ab = 11; find a + b.
If x + y = 9, xy = 20
find: x - y
If `x + (1)/x = 3`; find `x^4 + (1)/x^4`
Simplify:
`("a" - 1/"a")^2 + ("a" + 1/"a")^2`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Using suitable identity, evaluate the following:
1033
Expand the following:
(4a – b + 2c)2
If a + b + c = 9 and ab + bc + ca = 26, find a2 + b2 + c2.
Find the value of x3 + y3 – 12xy + 64, when x + y = – 4