Advertisements
Advertisements
प्रश्न
Expand the following, using suitable identity:
(–2x + 3y + 2z)2
उत्तर
It is known that,
(x + y + z)2 = x2 + y2 + z2 + 2xy + 2yz + 2zx
(–2x + 3y + 2z)2 = (–2x)2 + (3y)2 + (2z)2 + 2(–2x)(3y) + 2(3y)(2z) + 2(2z)(–2x)
= 4x2 + 9y2 + 4z2 – 12xy + 12yz – 8xz
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Evaluate the following product without multiplying directly:
95 × 96
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Simplify `(x^2 + y^2 - z)^2 - (x^2 - y^2 + z^2)^2`
If a + b + c = 0 and a2 + b2 + c2 = 16, find the value of ab + bc + ca.
Simplify the following expressions:
`(x + y - 2z)^2 - x^2 - y^2 - 3z^2 +4xy`
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
If \[x - \frac{1}{x} = 5\] ,find the value of \[x^3 - \frac{1}{x^3}\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
Use identities to evaluate : (502)2
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
Use the direct method to evaluate :
(4+5x) (4−5x)
Use the direct method to evaluate :
(xy+4) (xy−4)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
Simplify by using formula :
`("a" + 2/"a" - 1) ("a" - 2/"a" - 1)`
Factorise the following:
4x2 + 20x + 25
Expand the following:
(–x + 2y – 3z)2
Find the value of x3 – 8y3 – 36xy – 216, when x = 2y + 6