Advertisements
Advertisements
प्रश्न
Find the cube of the following binomials expression :
\[2x + \frac{3}{x}\]
उत्तर
In the given problem, we have to find cube of the binomial expressions
Given `(2x + 3/x)^3`
We shall use the identity `(a+b)^3 = a^3+b^3 +3ab(a+b).`
Here `a = 2x,b = 3/x,`
By applying identity we get
`(2x + 3/x)^3 = (2x)^3 +(3/x)^3 + 3 (2x) (3/x) (2x+3/x)`
`= 2x xx 2x xx2x|+3/x xx3/x xx 3/x+18x/x (2x+3/x)`
`= 8x^3 +27/x^3 + (18x)/x (2x + 3/x)`
` = 8x^3 +27/x^3 + (18xx 2x) +(18 xx 3/x)`
`8^3+27/x^3 + 36x +54/x`
Hence cube of the binomial expression of `(2x + 3/x) 8^3+27/x^3 + 36x +54/x`
APPEARS IN
संबंधित प्रश्न
Evaluate the following using suitable identity:
(998)3
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify (2x + p - c)2 - (2x - p + c)2
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
If a − b = 4 and ab = 21, find the value of a3 −b3
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Find the following product:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If a + b = 10 and ab = 16, find the value of a2 − ab + b2 and a2 + ab + b2
If a − b = 5 and ab = 12, find the value of a2 + b2
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
If a + b + c = 9 and ab + bc + ca =23, then a3 + b3 + c3 − 3abc =
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
Evaluate: (4 − ab) (8 + ab)
Expand the following:
(3x + 4) (2x - 1)
If `"p" + (1)/"p" = 6`; find : `"p"^4 + (1)/"p"^4`
Simplify:
(x + y - z)2 + (x - y + z)2
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).