Advertisements
Advertisements
प्रश्न
Find the following product:
उत्तर
Given\[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\]
We shall use the identity `(a-b)(a^2 + ab + b^2) = a^3 - b^3`
We can rearrange the \[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\] as
\[\left( \frac{3}{x} - 2 x^2 \right)\left( \left( \frac{3}{x} \right)^2 + \left( 2 x^2 \right)^2 - \left( \frac{3}{x} \right)\left( 2 x^2 \right) \right)\]
\[ = \left( \frac{3}{x} \right)^3 - \left( 2 x^2 \right)^3 \]
\[ = \left( \frac{3}{x} \right)\left( \frac{3}{x} \right)\left( \frac{3}{x} \right) - \left( 2 x^2 \right)\left( 2 x^2 \right)\left( 2 x^2 \right)\]
\[ = \frac{27}{x^3} - 8 x^6\]
Hence the Product value of \[\left( \frac{3}{x} - 2 x^2 \right) \left( \frac{9}{x^2} + 4 x^4 - 6x \right)\] is `27/x^3 - 8x^6`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(x + 4) (x + 10)
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Write in the expanded form:
(2a - 3b - c)2
Write in the expanded form:
`(2 + x - 2y)^2`
If \[x + \frac{1}{x} = 5\], find the value of \[x^3 + \frac{1}{x^3}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If x = −2 and y = 1, by using an identity find the value of the following
Use identities to evaluate : (101)2
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
If 3x + 4y = 16 and xy = 4; find the value of 9x2 + 16y2.
Use the direct method to evaluate :
(2+a) (2−a)
Use the direct method to evaluate :
(0.5−2a) (0.5+2a)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If `"r" - (1)/"r" = 4`; find: `"r"^2 + (1)/"r"^2`
If `x + (1)/x = "p", x - (1)/x = "q"`; find the relation between p and q.
Simplify:
(4x + 5y)2 + (4x - 5y)2
Factorise the following:
9y2 – 66yz + 121z2
Find the following product:
(x2 – 1)(x4 + x2 + 1)
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.