Advertisements
Advertisements
प्रश्न
Write in the expanded form:
(2a - 3b - c)2
उत्तर
We have
`(2a - 3b - c)^2 = [(2a) + (-3b) +(-c)]^2`
`= (2a)^2 + (-3b)^2 + (-c)^2 + 2(2a)(-3b) + 2(-3b)(-c) + 2(2a)(-c)`
`[∵ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc = 2ca]`
`= 4a^2 + 9b^2 + c^2 - 12ab + 6bc - 4ac`
`∴ (2a - 3b - c)^2 = 4a^2 + 9b^2 + c^2 - 12ab + 6bc - 4ca`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Factorise:
4x2 + 9y2 + 16z2 + 12xy – 24yz – 16xz
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Evaluate the following using identities:
(399)2
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Find the value of 27x3 + 8y3, if 3x + 2y = 20 and xy = \[\frac{14}{9}\]
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate :
(3b−1) (3b+1)
Evaluate, using (a + b)(a - b)= a2 - b2.
399 x 401
If p + q = 8 and p - q = 4, find:
p2 + q2
If m - n = 0.9 and mn = 0.36, find:
m2 - n2.
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
If a + b + c = 0, then a3 + b3 + c3 is equal to ______.