Advertisements
Advertisements
प्रश्न
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
उत्तर
In the given problem, we have to find Product of equations
Given (3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
We shall use the identity
`x^3 + y^3 + z^3 - 3xyz = (x+y+z) (x^2 + y^2 + z^2 - xy - yz - zx)`
` = (3x)^3 + (2y)^3 + (2z)^3 - 3 (3x)(2y)(2z)`
` =(3x) xx (3x) xx (3x) + (2y) xx(2y) xx(2y) + (2z) xx(2z) xx(2z)-3(3x)(2y)(2z) `
` = 27x^3 + 8y^3 + 8z^3 - 36xyz`
Hence the product of (3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)is `27x^3 + 8y^3 + 8z^3 - 36xyz`
APPEARS IN
संबंधित प्रश्न
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Evaluate the following using identities:
117 x 83
If 3x - 7y = 10 and xy = -1, find the value of `9x^2 + 49y^2`
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
If a + b = 10 and ab = 21, find the value of a3 + b3
Evaluate of the following:
(9.9)3
Evaluate of the following:
463+343
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
Use identities to evaluate : (502)2
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate the following products :
(y + 5)(y – 3)
Use the direct method to evaluate :
(ab+x2) (ab−x2)
If p + q = 8 and p - q = 4, find:
p2 + q2
If x + y = 1 and xy = -12; find:
x - y
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`