Advertisements
Advertisements
प्रश्न
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
उत्तर
(i) We know that,
( a - b )2 = a2 - 2ab + b2
and
( a + b )2 = a2 + 2ab + b2
Rewrite the above equation, we have
( a + b )2 = a2 + b2 - 2ab + 4ab
= ( a - b )2 + 4ab ...(1)
Given that a - b = 0.9 ; ab = 0.36
Substitute the values of ( a - b ) and (ab)
in equation (1), we have
( a + b )2 = ( 0.9 )2 + 4( 0.36 )
= 0.81 + 1.44 = 2.25
⇒ a + b = `+- sqrt2.25`
⇒ a + b = `+-1.5` ..(2)
(ii) We know that,
a2 - b2 = ( a + b )( a - b ) ....(3)
From equation (2) we have,
a + b = `+-`1.5
Thus equation (3) becomes,
a2 - b2 = `(+- 1.5)(0.9)` [ given a - b = 0.9 ]
⇒ a2 - b2 = `+-`1.35
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
The product (x2−1) (x4 + x2 + 1) is equal to
Evaluate: `(2"a"+1/"2a")(2"a"-1/"2a")`
Expand the following:
(2x - 5) (2x + 5) (2x- 3)
Find the squares of the following:
3p - 4q2
Evaluate the following without multiplying:
(95)2
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.