Advertisements
Advertisements
प्रश्न
Find the following product:
(3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
उत्तर
In the given problem, we have to find Product of equations
Given (3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)
We shall use the identity
`x^3 + y^3 + z^3 - 3xyz = (x+y+z) (x^2 + y^2 + z^2 - xy - yz - zx)`
` = (3x)^3 + (2y)^3 + (2z)^3 - 3 (3x)(2y)(2z)`
` =(3x) xx (3x) xx (3x) + (2y) xx(2y) xx(2y) + (2z) xx(2z) xx(2z)-3(3x)(2y)(2z) `
` = 27x^3 + 8y^3 + 8z^3 - 36xyz`
Hence the product of (3x + 2y + 2z) (9x2 + 4y2 + 4z2 − 6xy − 4yz − 6zx)is `27x^3 + 8y^3 + 8z^3 - 36xyz`
APPEARS IN
संबंधित प्रश्न
Factorise the following using appropriate identity:
9x2 + 6xy + y2
Write the following cube in expanded form:
`[3/2x+1]^3`
Evaluate the following using suitable identity:
(99)3
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Evaluate the following using identities:
(399)2
Write in the expanded form:
`(a/(bc) + b/(ca) + c/(ab))^2`
Write in the expanded form: `(x + 2y + 4z)^2`
Simplify the following expressions:
`(x^2 - x + 1)^2 - (x^2 + x + 1)^2`
Find the following product:
\[\left( 3 + \frac{5}{x} \right) \left( 9 - \frac{15}{x} + \frac{25}{x^2} \right)\]
Find the following product:
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
If 49a2 − b = \[\left( 7a + \frac{1}{2} \right) \left( 7a - \frac{1}{2} \right)\] then the value of b is
Use the direct method to evaluate :
(xy+4) (xy−4)
Use the direct method to evaluate :
`("z"-2/3)("z"+2/3)`
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If `x^2 + (1)/x^2 = 18`; find : `x - (1)/x`
Simplify:
(1 + x)(1 - x)(1 - x + x2)(1 + x + x2)
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`