Advertisements
Advertisements
प्रश्न
The product (a + b) (a − b) (a2 − ab + b2) (a2 + ab + b2) is equal to
पर्याय
a6 + b6
a6 − b6
a3 − b3
a3 + b3
उत्तर
We have to find the product of `(a+b)(a-b)(a^2 - ab +b^2)(a^2+ab +b^2)`
Using identity
`a^3 +b^3 = (a+b)(a^2 - ab+b^2 )`
`a^3 -b^3 = (a-b)(a^2 +ab+b^2 )`
We can rearrange as
`= (a+b)(a^2 - ab +b^2)(a-b)(a^2 +ab+ b^2)`
`= (a^3 +b^3)(a^3 - b^3)`
Again using the identity `(a+b)(a-b)= a^2 -b^2`
Here `a = a^3,b = b^3`
`(a+b)(a-b) = a^2 - b^2`
` = (a^3)^2 - (b^3)^2`
` = a^6 - b^6`
Hence the product of `(a+b)(a^2 - ab +b^2)(a-b)(a^2+ab +b^2)` is `a^6 - b^6`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
Expand the following, using suitable identity:
(3a – 7b – c)2
Evaluate the following using suitable identity:
(102)3
Verify that `x^3+y^3+z^3-3xyz=1/2(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]`
What are the possible expressions for the dimensions of the cuboids whose volume is given below?
Volume : 12ky2 + 8ky – 20k |
Simplify `(a + b + c)^2 + (a - b + c)^2`
Simplify (a + b + c)2 + (a - b + c)2 + (a + b - c)2
If a + b + c = 9 and ab + bc + ca = 23, find the value of a2 + b2 + c2.
Simplify of the following:
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{x}{y} - \frac{y}{3} \right) \frac{x^2}{16} + \frac{xy}{12} + \frac{y^2}{9}\]
If a + b = 7 and ab = 10; find a - b.
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Use the direct method to evaluate the following products :
(3x – 2y) (2x + y)
Expand the following:
(x - 5) (x - 4)
Find the squares of the following:
9m - 2n
If `"a" - 1/"a" = 10;` find `"a" + 1/"a"`
If x + y = 1 and xy = -12; find:
x2 - y2.
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
Give possible expressions for the length and breadth of the rectangle whose area is given by 4a2 + 4a – 3.