Advertisements
Advertisements
प्रश्न
Simplify `(a + b + c)^2 + (a - b + c)^2`
उत्तर
We have
`(a + b + c)^2 + (a - b + c)^2`
`= [(a + b + c)^2] - [a - b + c]^2`
`= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - [a^2 + b^2 + c^2 - 2ab - 2bc + 2ca]`
`= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - a^2 - b^2 - c^2 + 2ab + 2bc - 2ca`
= 4ab + 4bc
`∴ (a + b + c)^2 - (a - b + c)^2 = 4ab + 4bc`
APPEARS IN
संबंधित प्रश्न
Factorise:
`2x^2 + y^2 + 8z^2 - 2sqrt2xy + 4sqrt2yz - 8xz`
Evaluate following using identities:
(a - 0.1) (a + 0.1)
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
Evaluate of the following:
(598)3
Simplify of the following:
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
Find the following product:
(3x − 4y + 5z) (9x2 +16y2 + 25z2 + 12xy −15zx + 20yz)
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
If \[x^4 + \frac{1}{x^4} = 194,\] then \[x^3 + \frac{1}{x^3} =\]
If a + b + c = 0, then \[\frac{a^2}{bc} + \frac{b^2}{ca} + \frac{c^2}{ab} =\]
The product (x2−1) (x4 + x2 + 1) is equal to
If a + b = 7 and ab = 10; find a - b.
Evaluate: (2 − z) (15 − z)
Find the squares of the following:
`(7x)/(9y) - (9y)/(7x)`
If p + q = 8 and p - q = 4, find:
p2 + q2
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If x + y + z = 12 and xy + yz + zx = 27; find x2 + y2 + z2.
If `"r" - (1)/"r" = 4`; find : `"r"^4 + (1)/"r"^4`
The coefficient of x in the expansion of (x + 3)3 is ______.