Advertisements
Advertisements
प्रश्न
Simplify: `(a + b + c)^2 - (a - b + c)^2`
उत्तर
We have
`(a + b + c)^2 - (a - b + c)^2`
`=[(a + b + c)^2] - [a - b + c]^2`
`= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - [a^2 + b^2 + c^2 - 2ab - 2bc + 2ca]`
`= a^2 + b^2 + c^2 + 2ab + 2bc + 2ca - a^2 - b^2 - c^2 + 2ab + 2bc - 2ca`
`= 4ab + 4bc`
`∴ (a + b + c)^2 - (a - b + c)^2 = 4ab + 4bc`
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Write the following cube in expanded form:
(2x + 1)3
If x + y + z = 0, show that x3 + y3 + z3 = 3xyz.
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Simplify the following products:
`(x^3 - 3x^2 - x)(x^2 - 3x + 1)`
Simplify the expression:
`(x + y + z)^2 + (x + y/2 + 2/3)^2 - (x/2 + y/3 + z/4)^2`
If \[x - \frac{1}{x} = - 1\] find the value of \[x^2 + \frac{1}{x^2}\]
Evaluate of the following:
(103)3
Evaluate of the following:
`(10.4)^3`
Find the value of 64x3 − 125z3, if 4x − 5z = 16 and xz = 12.
Simplify of the following:
\[\left( x + \frac{2}{x} \right)^3 + \left( x - \frac{2}{x} \right)^3\]
Evaluate : (4a +3b)2 - (4a - 3b)2 + 48ab.
If a - `1/a`= 8 and a ≠ 0 find :
(i) `a + 1/a (ii) a^2 - 1/a^2`
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Evaluate: (4 − ab) (8 + ab)
Expand the following:
(3x + 4) (2x - 1)
Evaluate the following without multiplying:
(95)2
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If `x + (1)/x = 3`; find `x^2 + (1)/x^2`