Advertisements
Advertisements
प्रश्न
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
उत्तर
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
On rearranging we get,
⇒ `(x/2 - 2/5)[-(x/2 - 2/5)] - x^2 + 2x`
⇒ `- (x/2 - 2/5)^2 - x^2 + 2x`
We shall use the identity (x − y)2 = x2 − 2xy + y2
By substituting `x = x/2, y = 2/5`
⇒ `- [(x/2)^2 - 2(x/2)(2/5) + (2/5)^2] - x^2 + 2x`
⇒ `- [x^2/4 - (2x)/5 + 4/25] - x^2 + 2x`
⇒ `- [x^2/4 - (2x)/5 + 4/25] - x^2 + 2x`
⇒ `- x^2/4 + (2x)/5 - 4/25 - x^2 + 2x`
⇒ `- x^2/4 - x^2 - 4/25 + (2x)/5 + 2x`
⇒ `[- x^2/4 - x^2] - 4/25 + [(2x)/5 + 2x]`
⇒ `[- x^2/4 - x^2] - 4/25 + [(2x)/5 + 2x]`
⇒ `[- x^2/4 - (4x^2)/4] - 4/25 + [(2x)/5 + (10x)/5]`
⇒ `[(- x^2 - 4x^2)/4] - 4/25 + [(2x + 10x)/5]`
⇒ `(- 5x^2)/4 - 4/25 + (12x)/5`
Hence, the value of `(- 5x^2)/4 - 4/25 + (12x)/5`.
APPEARS IN
संबंधित प्रश्न
Use suitable identity to find the following product:
`(y^2+3/2)(y^2-3/2)`
Factorise the following using appropriate identity:
4y2 – 4y + 1
Give possible expression for the length and breadth of the following rectangle, in which their area are given:
Area : 25a2 – 35a + 12 |
Evaluate the following using identities:
117 x 83
If `x^2 + 1/x^2 = 66`, find the value of `x - 1/x`
Simplify the following products:
`(2x^4 - 4x^2 + 1)(2x^4 - 4x^2 - 1)`
If \[x^2 + \frac{1}{x^2}\], find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
Find the following product:
If \[\frac{a}{b} + \frac{b}{a} = 1\] then a3 + b3 =
Use direct method to evaluate the following products :
(x + 8)(x + 3)
Simplify by using formula :
(a + b - c) (a - b + c)
If a2 + b2 + c2 = 41 and a + b + c = 9; find ab + bc + ca.
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
(x + 2y + 3z)(x2 + 4y2 + 9z2 - 2xy - 6yz - 3zx)
The coefficient of x in the expansion of (x + 3)3 is ______.
Expand the following:
`(4 - 1/(3x))^3`
Find the following product:
`(x/2 + 2y)(x^2/4 - xy + 4y^2)`
Prove that (a + b + c)3 – a3 – b3 – c3 = 3(a + b)(b + c)(c + a).