Advertisements
Advertisements
प्रश्न
Find the following product:
\[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
उत्तर
Given \[\left( \frac{x}{2} + 2y \right) \left( \frac{x^2}{4} - xy + 4 y^2 \right)\]
We shall use the identity `a^3 + b^3 = (a+b)(a^2 - ab + b^2)`
We can rearrange the `(x/2 + 2y) (x^2/4 - xy + 4y^2)`as
` = (x/2 + 2y)[(x/2)^2 - (x/2)(2y)+ (2y)^2]`
` = (x/2)^3 + (2y)^3`
`= (x/2 ) xx (x/2 )xx (x/2 )+ (2y) xx (2y) xx (2y) `
`= x^3/8 + 8y^3`
Hence the Product value of `(x/2 + 2y) (x^2/4 - xy + 4y^2)`is `x^2 / 8 + 8y^3`.
APPEARS IN
संबंधित प्रश्न
Write the following cube in expanded form:
`[3/2x+1]^3`
Evaluate the following using identities:
(1.5x2 − 0.3y2) (1.5x2 + 0.3y2)
Write in the expanded form:
(2a - 3b - c)2
Simplify (2x + p - c)2 - (2x - p + c)2
Evaluate of the following:
(103)3
Evaluate of the following:
463+343
Simplify of the following:
(2x − 5y)3 − (2x + 5y)3
Find the following product:
If \[x - \frac{1}{x} = \frac{1}{2}\],then write the value of \[4 x^2 + \frac{4}{x^2}\]
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If \[x - \frac{1}{x} = \frac{15}{4}\], then \[x + \frac{1}{x}\] =
Evaluate `(a/[2b] + [2b]/a )^2 - ( a/[2b] - [2b]/a)^2 - 4`.
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
If a - b = 0.9 and ab = 0.36; find:
(i) a + b
(ii) a2 - b2.
Expand the following:
(m + 8) (m - 7)
Expand the following:
(x - 3y - 2z)2
If m - n = 0.9 and mn = 0.36, find:
m + n
Factorise the following:
9y2 – 66yz + 121z2
Expand the following:
`(4 - 1/(3x))^3`