Advertisements
Advertisements
प्रश्न
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
उत्तर
Given (7p4 + q) (49p8 − 7p4q + q2)
We shall use the identity `a^3 + b^3 = (a+b)(a^2 - ab+ b^2)`
We can rearrange the (7p4 + q) (49p8 − 7p4q + q2) as
`(7p^4 + q)[(7p^4)^2 - (7p^4) (q)+ (q)^2]`
` = (7p^4)^3 + (q)^3`
` = (7p^4) xx (7p^4) xx (7p^4) + (q) xx (q) xx (q)`
` = 343p^12+q^3`
Hence the Product value of `(7p^4+ q)(49p^8 - 7p^4q+q^2)`is `343p^12 +q^3`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
104 × 96
Write the following cube in expanded form:
(2a – 3b)3
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
If 2x + 3y = 8 and xy = 2 find the value of `4x^2 + 9y^2`
If a + b = 10 and ab = 21, find the value of a3 + b3
Simplify of the following:
If x = −2 and y = 1, by using an identity find the value of the following
If a + b + c = 9 and ab +bc + ca = 26, find the value of a3 + b3+ c3 − 3abc
If a + b = 7 and ab = 12, find the value of a2 + b2
If a − b = 5 and ab = 12, find the value of a2 + b2
If \[x^3 - \frac{1}{x^3} = 14\],then \[x - \frac{1}{x} =\]
Use identities to evaluate : (97)2
Evalute : `((2x)/7 - (7y)/4)^2`
Evaluate: (1.6x + 0.7y) (1.6x − 0.7y)
Expand the following:
(m + 8) (m - 7)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If `49x^2 - b = (7x + 1/2)(7x - 1/2)`, then the value of b is ______.
Find the following product:
(x2 – 1)(x4 + x2 + 1)