Advertisements
Advertisements
प्रश्न
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
उत्तर
Given (7p4 + q) (49p8 − 7p4q + q2)
We shall use the identity `a^3 + b^3 = (a+b)(a^2 - ab+ b^2)`
We can rearrange the (7p4 + q) (49p8 − 7p4q + q2) as
`(7p^4 + q)[(7p^4)^2 - (7p^4) (q)+ (q)^2]`
` = (7p^4)^3 + (q)^3`
` = (7p^4) xx (7p^4) xx (7p^4) + (q) xx (q) xx (q)`
` = 343p^12+q^3`
Hence the Product value of `(7p^4+ q)(49p^8 - 7p^4q+q^2)`is `343p^12 +q^3`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following product without multiplying directly:
103 × 107
Evaluate the following using suitable identity:
(99)3
Factorise the following:
64a3 – 27b3 – 144a2b + 108ab2
Verify:
x3 + y3 = (x + y) (x2 – xy + y2)
Evaluate the following using identities:
(2x + y) (2x − y)
Simplify the following product:
(x2 + x − 2)(x2 − x + 2)
If `x - 1/x = 3 + 2sqrt2`, find the value of `x^3 - 1/x^3`
Simplify of the following:
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{5}{x} + 5x \right)\] \[\left( \frac{25}{x^2} - 25 + 25 x^2 \right)\]
If \[x + \frac{1}{x} = 3\] then \[x^6 + \frac{1}{x^6}\] =
If \[x^2 + \frac{1}{x^2} = 102\], then \[x - \frac{1}{x}\] =
If a1/3 + b1/3 + c1/3 = 0, then
Expand the following:
(x - 3y - 2z)2
Simplify by using formula :
(2x + 3y) (2x - 3y)
If a - b = 10 and ab = 11; find a + b.
If p + q = 8 and p - q = 4, find:
pq
If `"a"^2 + (1)/"a"^2 = 14`; find the value of `"a" + (1)/"a"`
If `"a" + (1)/"a" = 2`, then show that `"a"^2 + (1)/"a"^2 = "a"^3 + (1)/"a"^3 = "a"^4 + (1)/"a"^4`
Simplify:
(2x + y)(4x2 - 2xy + y2)
Evaluate the following :
1.81 x 1.81 - 1.81 x 2.19 + 2.19 x 2.19