Advertisements
Advertisements
Question
Find the following product:
(7p4 + q) (49p8 − 7p4q + q2)
Solution
Given (7p4 + q) (49p8 − 7p4q + q2)
We shall use the identity `a^3 + b^3 = (a+b)(a^2 - ab+ b^2)`
We can rearrange the (7p4 + q) (49p8 − 7p4q + q2) as
`(7p^4 + q)[(7p^4)^2 - (7p^4) (q)+ (q)^2]`
` = (7p^4)^3 + (q)^3`
` = (7p^4) xx (7p^4) xx (7p^4) + (q) xx (q) xx (q)`
` = 343p^12+q^3`
Hence the Product value of `(7p^4+ q)(49p^8 - 7p^4q+q^2)`is `343p^12 +q^3`.
APPEARS IN
RELATED QUESTIONS
Use suitable identity to find the following product:
(3 – 2x) (3 + 2x)
Factorise the following using appropriate identity:
`x^2 - y^2/100`
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Factorise the following:
64m3 – 343n3
Find the cube of the following binomials expression :
\[\frac{1}{x} + \frac{y}{3}\]
If \[x^4 + \frac{1}{x^4} = 194,\] find \[x^3 + \frac{1}{x^3}, x^2 + \frac{1}{x^2}\] and \[x + \frac{1}{x}\]
If \[x^4 + \frac{1}{x^4} = 119\] , find the value of \[x^3 - \frac{1}{x^3}\]
Find the following product:
If a + b = 6 and ab = 20, find the value of a3 − b3
If \[\frac{a}{b} + \frac{b}{a} = - 1\] then a3 − b3 =
(x − y) (x + y) (x2 + y2) (x4 + y4) is equal to
If \[x^4 + \frac{1}{x^4} = 623\] then \[x + \frac{1}{x} =\]
Evalute : `((2x)/7 - (7y)/4)^2`
Use the direct method to evaluate :
(2a+3) (2a−3)
Evaluate: (4 − ab) (8 + ab)
Evaluate: (5xy − 7) (7xy + 9)
Evaluate, using (a + b)(a - b)= a2 - b2.
4.9 x 5.1
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" + (1)/"a"`
Factorise the following:
16x2 + 4y2 + 9z2 – 16xy – 12yz + 24xz
Expand the following:
`(1/x + y/3)^3`