Advertisements
Advertisements
Question
Factorise the following:
8a3 + b3 + 12a2b + 6ab2
Solution
8a3 + b3 + 12a2b + 6ab2
= (2a)3 + (b)3 + 6ab(2a + b)
= (2a)3 + (b)3 + 3(2a)(b)(2a + b) ...[Using a3 + b3 + 3ab(a + b) = (a + b)3]
= (2a + b)(2a + b)(2a + b)
APPEARS IN
RELATED QUESTIONS
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Without actually calculating the cubes, find the value of the following:
(28)3 + (–15)3 + (–13)3
Evaluate the following using identities:
117 x 83
Simplify the following products:
`(x/2 - 2/5)(2/5 - x/2) - x^2 + 2x`
Write in the expand form: `(2x - y + z)^2`
If 3x − 2y = 11 and xy = 12, find the value of 27x3 − 8y3
Evaluate of the following:
(103)3
Find the following product:
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
If a + b + c = 9 and ab + bc + ca = 23, then a2 + b2 + c2 =
Find the square of `(3a)/(2b) - (2b)/(3a)`.
Use the direct method to evaluate :
(3x2+5y2) (3x2−5y2)
Expand the following:
(3x + 4) (2x - 1)
Simplify by using formula :
(x + y - 3) (x + y + 3)
Evaluate, using (a + b)(a - b)= a2 - b2.
999 x 1001
If `"a"^2 - 7"a" + 1` = 0 and a = ≠ 0, find :
`"a" + (1)/"a"`
If p2 + q2 + r2 = 82 and pq + qr + pr = 18; find p + q + r.
Simplify:
(2x + y)(4x2 - 2xy + y2)
Using suitable identity, evaluate the following:
101 × 102
If a + b + c = 5 and ab + bc + ca = 10, then prove that a3 + b3 + c3 – 3abc = – 25.