English

If X + 1 X = 2 , Then X 3 + 1 X 3 = - Mathematics

Advertisements
Advertisements

Question

If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]

Options

  • 64

  • 14

  • 8

  • 2

MCQ

Solution

In the given problem, we have to find the value of  `x^3+1/x^3`

Given  `x+ 1/x = 2`

We shall use the identity `(a+b)^3 = a^3 +b^3 + 3ab(a+b)`

Here putting `x+ 1/x = 2`

`(x+ 1/x)^3 = x^3 + 1/x^3 + 3 (x xx 1/x)(x+1/ x)`

             `(2)^3 = x^3 + 1/x^3 + 3 (x xx 1/x )(2)`

                  ` 8 =x^3 + 1/x^3 + 6`

           ` 8-6 = x^3 + 1/x^3`

                  ` 2= x^3 + 1/x^3`

Hence the value of  `x^3 + 1/x^3` is  2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Algebraic Identities - Exercise 4.7 [Page 30]

APPEARS IN

RD Sharma Mathematics [English] Class 9
Chapter 4 Algebraic Identities
Exercise 4.7 | Q 2 | Page 30

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×