Advertisements
Advertisements
Question
If \[x + \frac{1}{x} = 2\], then \[x^3 + \frac{1}{x^3} =\]
Options
64
14
8
2
Solution
In the given problem, we have to find the value of `x^3+1/x^3`
Given `x+ 1/x = 2`
We shall use the identity `(a+b)^3 = a^3 +b^3 + 3ab(a+b)`
Here putting `x+ 1/x = 2`,
`(x+ 1/x)^3 = x^3 + 1/x^3 + 3 (x xx 1/x)(x+1/ x)`
`(2)^3 = x^3 + 1/x^3 + 3 (x xx 1/x )(2)`
` 8 =x^3 + 1/x^3 + 6`
` 8-6 = x^3 + 1/x^3`
` 2= x^3 + 1/x^3`
Hence the value of `x^3 + 1/x^3` is 2.
APPEARS IN
RELATED QUESTIONS
Evaluate the following product without multiplying directly:
103 × 107
Factorise the following using appropriate identity:
4y2 – 4y + 1
Factorise the following:
8a3 – b3 – 12a2b + 6ab2
Verify:
x3 – y3 = (x – y) (x2 + xy + y2)
Evaluate the following using identities:
`(2x+ 1/x)^2`
Write in the expanded form:
`(2 + x - 2y)^2`
Evaluate of the following:
`(10.4)^3`
If x = 3 and y = − 1, find the values of the following using in identify:
\[\left( \frac{3}{x} - \frac{x}{3} \right) \left( \frac{x^2}{9} + \frac{9}{x^2} + 1 \right)\]
Evaluate:
253 − 753 + 503
If a − b = −8 and ab = −12, then a3 − b3 =
If x + y = `7/2 "and xy" =5/2`; find: x - y and x2 - y2
Use the direct method to evaluate the following products :
(8 – b) (3 + b)
Evaluate: (9 − y) (7 + y)
Simplify by using formula :
(1 + a) (1 - a) (1 + a2)
If x + y = 1 and xy = -12; find:
x - y
If a2 - 3a - 1 = 0 and a ≠ 0, find : `"a" - (1)/"a"`
Simplify:
(7a +5b)2 - (7a - 5b)2
Simplify:
`(x - 1/x)(x^2 + 1 + 1/x^2)`
Factorise the following:
`(2x + 1/3)^2 - (x - 1/2)^2`
Without actually calculating the cubes, find the value of:
`(1/2)^3 + (1/3)^3 - (5/6)^3`